TIEG1/KLF10 Modulates Runx2 Expression and Activity in Osteoblasts

نویسندگان

  • John R. Hawse
  • Muzaffer Cicek
  • Sarah B. Grygo
  • Elizabeth S. Bruinsma
  • Nalini M. Rajamannan
  • Andre J. van Wijnen
  • Jane B. Lian
  • Gary S. Stein
  • Merry Jo Oursler
  • Malayannan Subramaniam
  • Thomas C. Spelsberg
چکیده

Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFβ1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone

We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide ev...

متن کامل

TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway.

TIEG1 can induce apoptosis of cancer cells, but its role in inhibiting invasion and metastasis has not been reported and is unclear. In this study, we find that decreased TIEG1 expression is associated with increased human epidermal growth factor receptor (EGFR) expression in breast cancer tissues and cell lines. TIEG1 plays an important role in suppressing transcription of EGFR by directly bin...

متن کامل

TGF-β Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways

TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1(-/-) mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we ha...

متن کامل

Molecular structure of tail tendon fibers in TIEG1 knockout mice using synchrotron diffraction technology.

The purpose of this study was to characterize the effect of TIEG1 on the molecular structure of collagen within tail tendon fibers using 3-mo-old female C57BL/6 wild-type (WT) and TIEG1 KO mice. Synchrotron X-ray microdiffraction experiments were carried out on single tendon fibers extracted from the WT and TIEG1 KO dorsal tail tendon. The fibers were scanned in the radial direction, and X-ray ...

متن کامل

Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression.

We examined the osteoblast/osteocyte expression and function of polycystin-1 (PC1), a transmembrane protein that is a component of the polycystin-2 (PC2)-ciliary mechano-sensor complex in renal epithelial cells. We found that MC3T3-E1 osteoblasts and MLO-Y4 osteocytes express transcripts for PC1, PC2, and the ciliary proteins Tg737 and Kif3a. Immunohistochemical analysis detected cilia-like str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011